Проверка импульсных трансформаторов и тдкс. Тестирование строчной развертки при малом напряжении питания. Схема, описание Тдкс высоковольтная разряд схема


Тестер трансформаторов - это незаменимый прибор при ремонте телевизоров, мониторов и других подобных устройств. С большой точностью он может указать на КЗ в витках. У меня работает с 2003 года, на работу нареканий нет. Прибор запускается сразу и налаживания не требует. Подключил, кнопку нажал, посмотрел - если будет замыкание в витках - покажет. Не подводил еще ни разу, таким тестером намного лучше, чем генератором да осциллографом, наличия короткого вычислять. Собирал по оригинальной схеме, только мастеркитовскую печатку немного переделал, сжал и поместил на нее батарейки питания. Дальше схема электрическая и описание от автора, опубликованное в журнале "Ремонт электронной техники ":

Данный несложный прибор позволяет без выпаивания трансформатора из схемы диагностировать дефекты и существенно сократить время ремонта. Известно, что частая причина отказов телевизоров и мониторов - это выход из строя силовых элементов блоков питания и строчной развертки. Это легко объяснимо, ведь они работают в очень тяжелых условиях, при высоких токах и напряжениях. Нередко выход из строя одного элемента, например строчного трансформатора, провоцирует выход из строя других связанных с ним элементов, таких как выходной транзистор или демпферные диоды. Иногда трудно сразу обнаружить все поврежденные элементы и определить причину их отказа, а при неправильно определенной причине замененные элементы могут через короткое время снова выйти из строя, увеличивая затраты на ремонт и, что еще хуже, роняя репутацию мастера в глазах клиентов.

Наиболее трудными для диагностики являются импульсные трансформаторы блоков питания, строчные трансформаторы и отклоняющие катушки ЭЛТ. Наиболее частый вид их отказа - появление короткозамкнутых витков, и он никак не диагностируется при помощи тестера. Проверка методом замены на заведомо исправный элемент также не всегда возможна, ведь такие трансформаторы обычно делаются под конкретную модель телевизора и являются весьма дорогостоящими элементами.

Существенно облегчить диагностику любых трансформаторов и дросселей на ферритовых сердечниках помогает предлагаемый тестер импульсных трансформаторов. Идея работы прибора основана на том факте, что все подобные трансформаторы работают на принципе накопления энергии и поэтому должны иметь высокую добротность, а наличие короткозамкнутых витков резко ее снижает. Задача состоит в том, как ее оценить простыми средствами.

Можно возбудить в контуре ударные колебания и подсчитать число периодов, за которое амплитуда упадет до определенного уровня. Известно, что это число пропорционально добротности контура. На этом принципе и построен прибор.

Тестер состоит из трех частей: генератора импульсов ударного возбуждения, компаратора импульсов “звона” и счетчика импульсов. Генератор импульсов собран на компараторе DA1.2 (LM393), транзисторах VT1, VT2 и диоде VD2. Он вырабатывает короткие импульсы ударного возбуждения длительностью около 2 мс и частотой около 10 Гц. Диод VD2 устанавливает амплитуду импульсов возбуждения равной примерно 0,7 В, что позволяет проводить проверку трансформаторов без их выпаивания из схемы, так как при таком напряжении имеющиеся в схеме p-n-переходы оказываются закрытыми и не влияют на результат измерения.

Проверяемый трансформатор подключается к выводам 3 и 4 тестера и совместно с конденсатором СЗ создает колебательный контур. По спаду импульса возбуждения открывается транзистор VT2 и начинаются свободные затухающие колебания в образованном колебательном контуре. Эти колебания через переходной конденсатор С4 поступают на вход компаратора импульсов, собранного на DA1.1. На этот же вход поступает напряжение порога срабатывания, которое формируется делителем R11, R12 и опорным источником VD3. Порог выбран на уровне 10% от напряжения возбуждения.

В качестве опорного источника порога использован диод того же типа, что и в источнике ударного возбуждения, что гарантирует стабильность параметров тестера в достаточно широком диапазоне температур и питающих напряжений. С выхода компаратора импульсы поступают на вход счетчика импульсов, собранного на микросхеме DA2. Эта микросхема представляет собой два четырехразрядных сдвиговых регистра с последовательными входами.

В схеме тестера эти регистры соединены последовательно в один восьмиразрядный регистр, и информационный вход первого регистра подключен к лог. “1”. На тактовые входы микросхемы (выводы 1, 9) подаются импульсы с компаратора. Ко всем выходам регистра через токоограничивающие резисторы R15...R22 подключены светодиоды. Во время формирования импульса возбуждения регистры обнуляются по входам Reset (выводы 6 и 14) и все светодиоды гаснут. По спаду импульса возбуждения начинается колебательный процесс в контуре подключенного трансформатора. Возникшие колебания преобразуются компаратором в логические импульсы, которые далее поступают на сдвиговый регистр.

В сдвиговом регистре каждый импульс переносит лог. “1” на очередной разряд, зажигая последовательно светодиоды HL1...HL8. Для удобства пользования первые три светодиода красные (трансформатор неисправен), следующие два - желтые (ситуация неопределенная) и последние три - зеленые (трансформатор исправен). После окончания колебательного процесса число светящихся светодиодов равно числу периодов колебания. Если число импульсов более 8, то светятся все светодиоды.

Работа с прибором при проведении ремонта. Сначала нужно, не отпаивая никаких компонентов, подключить прибор выводом GND к шасси телевизора, а выводом НОТ к коллектору выходного транзистора строчной развертки. Если при нажатии на кнопку “Тест” загорится более четырех светодиодов, это говорит об исправности выходных цепей строчной развертки. Если светится менее двух светодиодов, то это говорит о наличии коротких замыканий на выходе цепей - необходимо выпаять выходной транзистор и повторить измерение.

Если после этого светится более четырех светодиодов, то требуется замена выходного транзистора, в противном случае нужно выпаять демпфирующий диод и повторить измерение. Свечение более четырех светодиодов свидетельствует о необходимости замены этого диода. Такие же операции необходимо повторить с конденсатором обратного хода и отклоняющими катушками ЭЛТ. Если результат отрицательный, то необходимо выпаять строчный трансформатор и провести его тестирование вне схемы. Свечение менее двух светодиодов при проверке выпаянного трансформатора говорит о наличии короткозамкнутых витков в трансформаторе и необходимости его замены.

Порядок проверки импульсных блоков питания и отклоняющих катушек ЭЛТ аналогичен. Следует только отметить, что при проверке может потребоваться временно отключить шунтирующие цепи, которые устанавливаются параллельно обмоткам.

Аналог микросхемы 4015 - К561ИР2, она совсем не дефицит, в магазинах без проблем можно будет купить. правда для более мощных обмоток (генератор авто, электродвигатели) он не годится, на ферритовых сердечниках покажет любое КЗ, а на трансформаторной стали - нет. Транзистор поставил 2N5401, а на месте полевого - 2N7000, подбирать ничего не надо. Прибор запускается сразу. Автор схемы В. Чулков , сборка nickolay78 .

Обсудить статью ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

Диагностику узла СР полезно провести до первого включения ВМ. После очистки от пыли деталей узла и в первую очередь ТДКС производят осмотр печатной платы в зоне силовых элементов и попутно определяют соответствие типу блок-схемы, способ включения ключевого транзистора и демпферного диода, а также выясняют, каким образом подается питание в схему.

Далее контролируют состояние ключевого транзистора омметром непосредственно на его выводах - переход К-Э не должен быть поврежденным. При этом необходимо учитывать, что параллельно ключевому транзистору подключен демпферный диод (или схема диодного модулятора из двух диодов), он также может быть поврежден, поэтому чтобы убедиться, что неисправен имен­но транзистор, можно диоды выпаять. Если сопротивление перехода отличается от нормального, то транзистор заменяют.

Аналогичным образом проверяют демпферный диод и ключевой транзистор в канале высоковольтной части, если узел СР выполнен по двухканальной схеме.

После замены дефектных деталей дополнительно проверяют отсутствие к.з. между цепями питания первичной обмотки и 0В омметром непосредственно на выводах ТДКС. Наличие сопротивления менее 0.5 кОм говорит о повреждениях в ТДКС или схемы дополнительного источника напряжения В+, возможен также дефект электролитического конденсатора фильтра.

На следующем этапе проверяют выходные выпрямители вторичных напряжений от ТДКС, для чего контролируют омметром сопротивление диодов, подключенных к обмоткам трансформатора и соответствующих электролитических конденсаторов, чтобы убедиться в отсутствии короткого замыкания в этах цепях.

В ходе проведенные проверок нет способа убедиться в исправности ТДКС без включения ВМ в рабочем режиме. Возможными неисправностями могут быть межвитковые замыкания в одной из обмоток или выход из строя высоковольтных выпрямительных диодов. Если нет полной уверенности в отсутствии неисправностей в ТДКС, а такое опасение может возникнуть если был поврежден транзистор и конструкция ИП не имеет хорошей защиты от перегрузок, при этом можно предположить что происходило длительное воздействие большого тока на первичную обмотку, в результате чего она могла быть перегрета и возникли короткозамкнутые витки, то желательно провести дополнительную проверку работоспособности ТДКС.

Следует отметить, что при включении питания на схему после замены всех неисправных деталей, при наличии короткозамкнутых витков в ТДКС произойдет повторное повреждение ключевого транзистора, а информации о причине неисправности не добавится.

Проверить ТДКС можно непосредственно в схеме пользуясь следующим приемом, основанным на том, что все токи и напряжения в схеме пропорциональны питающему напряжению В+, то есть принципиальное функционирование узла будет возможно даже при снижении его в несколько раз

Практически такую проверку осуществляют следующим образом. Отключают вывод питания ТДКС В+ от схем питания на печатной плате, разорвав соответствующую перемычку в этой цепи, или выпаяв, обычно имеющийся в цепи питания выходного каскада дроссель фильтра, затем подключают его к источнику питания с напряжением 12 - 24 В. Этим достигается эффект снижения во много раз рассеиваемой на транзисторе мощности, - она будет ниже допустимой даже при работе на ТДКС с короткозамкнутыми витками. Затем включают питание и осциллографом контролируют форму сигнала на коллекторе ключевого транзистора - она должна быть похожей на изображенную на рис 24 справа, то есть, должны присутствовать импульсы обратного хода в виде узких положительных полуволн синусоиды.

Если на рассматриваемой картине в промежутках между импульсами обратного хода присутствуют другие сигналы, напоминающие колебания, это свидетельствует о наличии короткозамкнутых витков в одной из обмоток ТДКС или недостаточном насыщении тока в базе ключевого транзистора.

Несмотря на сильные в этом случае искажения сигналов можно, измеряя их амплитуду и полярность на всех обмотках осциллографом, восстановить коэффициенты трансформации в обмотках, что поможет в дальнейшем при подборе аналога для замены ТДКС.

Замена ТДКС при наличии запасного не представляет сложности, но необходимо помнить, что после замены следует сделать контрольное измерение высокого напряжения, чтобы убедиться в отсутствии его превышения.

Подбор аналогов при замене ТДКС представляет большую сложность в случае ремонта ВМ типа VGA, SVGA, так как их параметры, такие как коэффициент трансформации обмотки высокого напряжения, величина собственной емкости обмоток, а также возможность работы на повышенных частотах, не позволяют найти даже похожий вариант из серии телевизионных. В случае ремонта ВМ типа CGA и EGA такой подбор в большинстве случаев возможен.

При повреждении ключевого транзистора и последующей его замене, если отсутствует оригинальный, следует проявлять осторожность, особенно в случае ВМ, работающих на повышенных частотах строчной развертки. Подбор аналога при замене производят с учетом максимального импульсного напряжения на коллекторе, максимального тока коллектора и времени включения /выключения (предельной рабочей частоты), а также максимальной рассеиваемой мощности.

После замены проверяют интенсивность разогрева радиатора ключевого транзистора и, если в течение 10 мин после включения в рабочем режиме температура будет выше нормальной (40 - 60 °С), то заменяют транзистор на другой, более подходящий. Естественно, это относится к случаю исправности всех деталей узла СР.

Если Вы не уверены в отсутствии других, еще не проявившихся неисправностей в узле СР и других, например БП, УУ, можно несколько облегчить режим работы выходного каскада снижением амплитуды импульса обратного хода на коллекторе ключевого транзистора, подпаяв дополнительный конденсатор емкостью 2000 - 6000 пФ и высоким рабочим напряжением, в зависимости от типа ВМ, между его коллектором и эмиттером.

Для схем на рис. 30 и 31 использовать такой прием нет смысла, так как аналогичный результат получается при изменении настройки соответствующих подстроечных резисторов. В любом случае такие приемы позволяют проводить поиск неисправностей в режиме близком к рабочему, что облегчает их нахождение наблюдением сигналов осциллографом и измерением напряжений вольтметром.

Попутно следует отметить, что возможность работы силовых схем узла СР во многом определяется УУ и схемами защит. Для проведения проверки работоспособности в целом узла СР можно временно блокировать некоторые сигналы, предварительно обеспечив вышеописанными методами выход из режимов перегрузки для силовых элементов.

После обеспечения возможности принципиальной работы узла СР производится проверка остальных частей схем во всех допустимых для данной модели ВМ режимах совместно с компьютером. При этом проверяют работу схем защит, возможность переключения режимов работы и действие транзисторных ключей в схемах коррекции линейности, а также прохождение сигналов и элементы схем регулировки размера строк.

Найденные при этом неисправности устраняют заменой соответствующих элементов, после чего производят восстановление схемы, т. е. снимают установленные во время проверки конденсаторы, устанавливают выпаянные перемычки и т.д. На окончательном этапе производят проверку действия всех органов управления на передней панели ВМ и регулировку необходимых подстроечных элементов на плате. Необходимым этапом проверки узла СР является контроль теплового режима ключевого транзистора, желательно в течение одного часа.

В заключение следует кратко остановиться на работах по замене ЭЛТ. Такая необходимость возникает крайне редко, так как ЭЛТ представляет собой изделие, выполненное по технологии изготовления электровакуумных приборов и имеет высокую надежность. На практике очень редко бывают случаи потери эмиссии в электронных пушках даже после длительного срока эксплуатации. Однако такая необходимость все же встречается, например, в случае неосторожного обращения или механических повреждений.

Замена ЭЛТ в случае установки той же марки не представляет сложности, но при наличии другого типа может вызвать большие трудности. Сложности обусловлены в большей степени отличием в параметрах применяемых отклоняющих систем, а именно, индуктивности катушек, необходимого количества ампер-витков и К.П.Д. системы. В последних моделях ВМ (с индексом LR, что означает Low Radiation) часто применяются ЭЛТ с ОС, имеющей высокий К.П.Д. что приводит к снижению мощности, потребляемой выходным каскадом СР. По этой причине замена такой ЭЛТ на более старый тип может привести к перегрузке ключевых элементов в выходном каскаде или недопустимой перегрузке ИП. Такая перегрузка может проявиться косвенно через повышение рабочей температуры силовых элементов из-за малых размеров радиаторов охлаждения, что приведет, например, к ухудшению надежности транзисторов вследствие снижения их предельных параметров с ростом температуры корпуса.

Кроме того, потребуются изменения в цепях коррекции линейности, управления размером строк и уточнение величины емкости, определяющей длительность обратного хода.

Из вышесказанного можно сделать вывод, что установка ЭЛТ другого типа не всегда может быть успешной и надо стремиться найти для замены оригинальную.

Схема высоковольтного генератора на знаменитом таймере 555 - одна из самых повторяемых. Причин много: простая конструкция, практически не нуждается в настройке, высокий КПД. Устройство может использоваться в качестве преобразователя для маломощных катушек Тесла, люстры Чижевского и в других видах озонаторов. Это демонстрационная установка, которой можно проводить ряд интересных опытов - плазменный шар, лестница Иакова и т.п.

В качестве высоковольтного трансформатора использован ТДКС со встроенным выпрямителем, схема подключения ниже.

Задающая схема достаточно проста. Таймер подключен по схеме генератора импульсов, частотнозадающая цепь настроена на частоту 27кГц. Монтаж выполнен на небольшой ПП, изготовленной по .

Параметры преобразователя:
Микросхема КР1006ВИ1 (аналог NE555)
Транзистор IRF630 установлен на большой теплоотвод от процессора компьютера, дополненный кулером.
Блок питания 12B 2A
Частота 27кГц.
Мощность всей установки не более 30-35 Ватт.
Корона образуется на расстоянии 7-8 см от контактов, дуга зажигается на расстоянии 4.5см! Выходное напряжение приблизительно 60-70 кВ.

Схема получилась достаточно мощной, пока еще служит в качестве демонстрационного генератора, в будущем найду другое применение.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Программируемый таймер и осциллятор

NE555

1 В блокнот
VT1 MOSFET-транзистор

IRF630

1 В блокнот
С1 Конденсатор 10 нФ 1 В блокнот
R1 Резистор

10 Ом

1 В блокнот
R2 Резистор

1 кОм

1 В блокнот
R3 Резистор

2 кОм

1

Строчные трансформаторы применяются для создания разверток в телевизоре. Приборы заключены в корпус, защищающий от высокого напряжения соседние детали. Раньше в цветных, черно-белых телевизорах при помощи строчного трансформатора ТВС получали ускоряющее напряжение. В схеме применялся умножитель. Строчный высоковольтный трансформатор передавал преобразованный электрический сигнал на представленный элемент. Умножитель вырабатывал напряжение фокусировки, обеспечивая работу второго катодного анода.

Сегодня применяется в схемах телевизора трансформатор диодно-каскадный строчной развертки (ТДКС). Что собой представляет подобная техника, как проверить ее своими руками и произвести ремонт, будет рассмотрено далее.

Особенности

Трансформаторы типа ТДКС сегодня включаются в схему телевизора для обеспечения анода (второго) кинескопа электрическим током с требуемыми параметрами. Напряжение исходящее составляет 25-30 кВ. В процессе работы оборудования формируется электрический поток. Это ускоряющее напряжение 300-800 В.

В зависимости от категории трансформаторов ТДКС, цоколевки, образуется вторичное напряжение, которое является дополнительным для обеспечения развертки кадрового типа. Приборы оборудования снимают в трансформаторах телевизоров сигнал луча кинескопа автоматически подстроенной частоты строчной развертки.

Схема подключения, цоколёвка в представленном трансформаторе характеризуют устройство. Прибор обладает первичной обмоткой. На нее подается электрический ток для дальнейшей развертки. С первичного контура подается питание для функционирования усилителей видеосигнала. Обмотка передает электричество на вторичную катушку. Отсюда производится питание соответствующих цепей.

Видео: Строчный трансформатор

Строчному трансформатору вменяется питание второго анода, ускоряющее напряжение, фокусировка. Эти процессы производятся в ТДКС. Регулировка происходит при помощи потенциометров. Трансформаторам представленной категории обеспечивается определенная цоколевка. Расположение выводов может быть в виде буквы О или U.

Поломка

Строчные устройства могут выходить из строя. Работа телевизора, монитора в этом случае будет невозможна. Существует много разновидностей моделей строчных агрегатов. Замена вызвает трудности. Стоимость аналоговых приборов высока. Некоторые телевизоры, мониторы требуют больших затрат при ремонте. Необходимые детали в некоторых случаях тяжело найти.

Чтобы приобрести только ту часть схемы, которая вышла из строя, произвести ее быструю замену, нужно проверить строчный трансформатор. Телевизору проще будет выполнить адекватный ремонт. В первую очередь проверьте, нет ли следующих неисправностей:

  1. Обрыв контура.
  2. Пробой герметичного корпуса.
  3. Замыкание между витков.
  4. Обрыв потенциометра.

Первые две поломки выявить достаточно просто. Это определяется визуально. Для выполнения замены неисправных элементов материал приобретается практически в любом магазине радиотехники.

Сложнее определить замыкание в контурах обмоток. Трансформатором в этом случае производится звук, напоминающий писк. Но не всегда требуется ремонт при появлении такого сигнала. ТДКС иногда пищит из-за высокого напряжения на вторичном контуре. Проверяете, что вызывает звук, при помощи специального прибора. Если оборудования нет, нужно искать другие варианты.

Проверка осциллографом

Если телевизору требуется проверка в системе ТДКС, проверка выполняется при помощи осциллографа. Для ремонта телевизора потребуется отрезать питающий прибор вывод. Далее нужно найти вторичный контур. Его работу исследуют при подключении к отрезанному выводу питания ТДКС через R-10 Ом. Замена или ремонт устройства потребуется, если подключение осциллографа выявит отклонения. Возможны следующие отклонения:

  • Межвитковое замыкание демонстрирует на R=10 Ом «прямоугольник» с большими помехами. Здесь остается почти все напряжение. Если неисправности в этой области нет, отклонение будет определяться долями вольта.
  • Если нет вторичного напряжения, требуется замена контура. Произошел обрыв.
  • Когда убирают R=10 Ом и создают нагрузку 0,2-1 кОм на вторичном контуре, оценивается нагрузка на выходе. Она должна повторять входящие показатели. Если есть отклонение, ТДКС подлежит ремонту или полной замене.

Существуют и другие поломки. Выявить их можно самостоятельно.

Восстановление прибора

Самостоятельная замена и ремонт ТДКС вполне возможна. Определив неисправность, можно восстановить работу системы. Рассматривая, как подключить строчный трансформатор к телевизорам, необходимо изучить процедуру возобновления его работы. В случае полной замены трансформаторного прибора, потребуется подобрать новое оборудование с соответствующей системой выводов. Только в этом случае техника будет работать корректно.

Если оборудование не работает из-за пробоя, значит, в корпусе появилась трещина. Найти ее можно при осмотре. Трещину потребуется зачистить, обезжирить, а затем залить эпоксидным клеем. При этом слой смолы должен составлять не менее 2 мм. Это позволит предотвратить пробой в дальнейшем.

Ремонт ТДКС при обрыве контура проблематичен. Потребуется перемотать катушку. Это трудоемкий процесс, требующий от мастера высокой концентрации на протяжении всей процедуры. Замена намотки возможна, но для этого требуется определенный опыт.

Если оборвалась обмотка накала, линию формируют из другого места. Применяется в этом случае изолированный провод. Кабель наматывают на сердечник. Напряжение устанавливается при использовании резистора.

Другие поломки

Существует множество причин, почему не работает ТДКС. Опытные радиолюбители помогут изучить распространенные неисправности.

Если в приборе пробит транзистор, необходимо его достать и замерять коллекторное напряжение без него. При определении слишком высокого показателя, его регулируют до требуемого значения. При невозможности совершения подобной процедуры, нужно поменять в блоке питания стабилитрон. Обязательно нужно установить новый конденсатор.

Рекомендуется проверить пайку на всех разъемах. При необходимости ее усиливают. Если такая проблема определялась на конденсаторах, их выпаивают. Осмотр может выявить почернение. Потребуется приобрести новую деталь. Если прямоугольные конденсаторы раздуты, их также следует заменить. Если видно остатки канифоли, их следует убрать при помощи спирта и щетки.

При постоянном пробивании транзистора в строчной разверстке, следует определить тип неисправности. Пробой может быть тепловым или электрическим. Именно неисправный трансформатор приводит к появлению подобной проблемы.

Интересное видео: Высокое напряжение на ТДКС

Рассмотрев особенности строчных трансформаторов, а также их возможные неисправности, можно самостоятельно произвести ремонтные работы. В этом случае приобретать новую, дорогую технику не потребуется. В некоторых случаях отремонтировать монитор без подобных действий не получится. Далеко не для каждого кинескопа сегодня в продаже представлены приборы ТДКС. Поэтому замена неисправных его частей порой является единственным приемлемым выходом.

Данная статья отвечает на вопросы: как проверить импульсный трансформатор и как проверить ТДКС .
Метод №1

Для проверки работоспособности трансформатора понадобится осциллограф и звуковой генератор с диапазоном частоты от 20 кГц до 100 кГц. Через конденсатор с емкостью 0,1-1 мкФ подается синусоидальный импульс с амплитудой 5-10 В на первичную обмотку проверяемого преобразователя. Сигнал вторичной обмотки измеряется подключенным к ней осциллографом. Если синусоидальный сигнал не искажен, на любом из участков частотного диапазона, то проверяемый трансформатор исправен. Искаженная синусоида свидетельствует о неисправности преобразователя. На рисунке 1 схематически показан способ подключения. На рисунке 2 – форма синусоидальных сигналов.

Рис. 1. Схема подключения тестируемого трансформатора (метод №1)
Рис. 2. Формы синусоидальных сигналов (метод №1)
Метод №2

Чтобы проверить исправность импульсного трансформатора данным методом, для начала необходимо параллельно подключить конденсатор емкостью 0,01-1 мкФ к первичной обмотке и с помощью генератора звуковых частот подать на обмотку сигнал с амплитудой 5-10 В. Далее, изменяя частоту сигнала генератора нужно создать резонанс в параллельно подключенном колебательном контуре и, с помощью осциллографа, контролировать амплитуду импульса. Если в работоспособном преобразователе замкнуть вторичную обмотку, то колебания в контуре прекратятся. Из чего можно сделать вывод, что из-за короткого замыкания в витках нарушается резонанс в колебательном контуре. Поэтому, если в тестируемом трансформаторе имеются короткозамкнутые витки, не зависимо от частоты сигнала, резонанс будет отсутствовать. Схема подсоединения всех элементов изображена на рисунке 3

Рис. 3. Схема подключения тестируемого трансформатора (метод №2)
Метод №3
Данный метод проверки трансформатора такой же, как и предыдущий, но с небольшим отличием: подключение конденсатора не параллельное, а последовательное. Если в обмотке трансформатора присутствуют короткозамкнутые витки, при резонансной частоте происходит обрыв колебаний в контуре и в дальнейшем вызвать резонанс будет невозможно.
Способ подключения схематически показан на рисунке 4.
Рис. 4. Схема подключения тестируемого трансформатора (метод №3)
Метод №4
Три предыдущих метода лучше подходят для тестирования разделительного трансформатора и трансформатора питания, а проверить работоспособность преобразователя ТДКС с помощью этих способов можно лишь приблизительно. Оценить пригодность строчного трансформатора можно следующим образом.

По коллекторной обмотке проверяемого преобразователя нужно пустить прямоугольный частотный импульс 1-10кГц с небольшой амплитудой (подойдет выходной сигнал для калибровки осциллографа). В то же место требуется подключить вход осциллографа и, исходя из полученного изображения, можно делать выводы. Если ТДСК исправен, то амплитуда наблюдаемых продифференцированных сигналов будет примерно такой же, как и исходные прямоугольные импульсы. При наличии в трансформаторе короткозамкнутых витков, на картинке будут видны короткие продифференцированные сигналы с амплитудой ниже в несколько раз, чем у исходного прямоугольного импульса.

Такой метод проверки считается рациональным, так как для тестирования ТДКС необходим всего лишь один измерительный прибор. Но стоит также учитывать, что не все осциллографы оснащены выходом генератора, который используется для калибровки прибора. К примеру, довольно распространенные осциллографы С1-94 и С1-112 не оборудованы отдельным генератором калибровки. Чтобы решить данную проблему, можно самостоятельно собрать простой генератор, который сможет поместиться на одной микросхеме. К тому же его не сложно установить в корпус осциллографа, что обеспечит быструю и эффективную проверку ТДКС трансформаторов. Схема сборки генератора изображена на рисунке 5.

Рис. 5. Схема генератора (метод №4)
Собранный генератор устанавливается внутри осциллографа в любом подходящем месте, питание подводится от 12 В шины. В качестве включателя удобней использовать тумблер сдвоенного типа (П2Т1-1В), который лучше разместить на передней части устройства, рядом с входным разъемом осциллографа.
Питание на генератор подается через одну пару контактов, через другую пару контактов соединяется вход самого осциллографа с выходом генератора. Благодаря чему, чтобы проверить исправность трансформатора, достаточно соединить обмотку преобразователя и вход осциллографа простым сигнальным проводом.
Метод №5

В этом методе описывается проверка ТДКС на межвитковые короткие замыкания и обрывы в обмотках без использования генератора. Перед началом тестирования преобразователя нужно отсоединить его вывод от источника электропитания (110-160 В). Далее, с помощью специальной перемычки необходимо замкнуть коллектор выходного транзистора строчной развертки с общим проводом. После чего узел электропитания по цепи 110-160 В нужно нагрузить электролампой в 40-60 Вт, 220 В. Теперь следует найти на вторичных обмотках преобразователя узла электропитания напряжение в 10-30 В и пропустить его через транзистор, с сопротивлением10 Ом, на отсоединенный вывод ТДКС. Сигнал резистора контролируется осциллографом. Если проверяемый трансформатор имеет межвитковые замыкания, то изображения будет выглядеть как «грязно-пушистый прямоугольник», и основная часть напряжения упадет на резисторе. Если замыкания отсутствуют, то рисунок прямоугольника будет чистым, а падение электросигнала на резисторе составит не более чем несколько долей Вольт.

Контролируя сигналы на вторичных обмотках, можно узнать, исправен трансформатор или нет. Если на картинке изображен прямоугольник, значит обмотка целая, если прямоугольника нет – обмотка оборвана. Далее нужно убрать резистор сопротивления (10 Ом) и повесить на все вторичные обмотки ТДКС нагрузку 0,2-1,0 кОм. Если на выходе изображения такое же, как и на входе, то ТДКС трансформатор исправен.